
Tutorial: Principles and Practices of Secure
Cryptographic Coding in Java

Ya Xiao, Miles Frantz, Sharmin Afrose

 Ph.D. students
Virginia Tech

ESORICS 2021

SaTC-1929701

http://yaogroup.cs.vt.edu/

Daphne Yao
Professor

Virginia Tech

1

Software is everywhere

2
https://www.eitdigital.eu/news-events/blog/article/guess-what-requires-150-million-lines-of-code/

Ford GT has over 10 million lines of code

F-22 Raptor has 2 million lines of code

Boeing 787 Dreamliner has 7 million lines of code

Ford pickup truck F-150 has 150 million lines of code

Security of Critical Infrastructure & Cyber-physical systems (CPS)

3 https://www.ptsecurity.com/upload/corporate/ww-en/analytics/ICS-Security-2017-eng.pdf
https://www.infosecurity-magazine.com/news/critical-infrastructure-more/

Industrial control systems (ICS)

4

Nov 2016

https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-muni-ransomeware

MUNI stations displayed:

"You Hacked, ALL Data Encrypted.

Contact For

Key(cryptom27@yandex.com)ID:681

,Enter."

Colonial Pipeline confirms it paid $4.4m
ransom to hacker gang after attack (2021)

5 https://www.theguardian.com/technology/2021/may/19/colonial-
pipeline-cyber-attack-ransom

To pay or not to pay? That’s the question

6

Survey of nearly 1,200 IT security practitioners and
decision makers across 17 countries

https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/

https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/
https://www.bleepingcomputer.com/news/security/only-half-of-those-who-paid-a-ransomware-were-able-to-recover-their-data/

Security breaches are scary, but
there are many points to prevent/detect them

7 Enterprise Data Breach: Causes, Challenges, Prevention, and Future Directions. Long Cheng, Fang Liu, and Danfeng Yao.
WIREs Data Mining and Knowledge Discovery. Wiley. 2017.

http://onlinelibrary.wiley.com/doi/10.1002/widm.1211/pdf
http://wires.wiley.com/WileyCDA/WiresJournal/wisId-WIDM.html

Defense in depth
strategy

(aka layered security)

8
https://www.malwarefox.com/layered-security/

This tutorial will focus on software scanning,
especially for detecting crypto API misuses

9

We need both -- developer training & using tools

1. Validate input. Validate input from all untrusted data sources.

2. Heed compiler warnings [and other warnings].

3. Architect and design for security policies.

4. Keep it simple.

5. Default deny.

6. Adhere to the principle of least privilege.

7. Sanitize data sent to other systems.

8. Practice defense in depth.

9. Use effective quality assurance techniques.

10. Adopt a secure coding standard.

 10

https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices

Top 10 secure coding rules

Microsoft secure development lifecycle (SDL)

11
https://social.technet.microsoft.com/wiki/contents/articles/7100.the-security-development-lifecycle.aspx

Developers need TOOLS and more TOOLS

Who wouldn’t want to write secure code?

12

Budget

Resources

Time
False positives

13

CSRF token in Java -- an example of the gap

14

From C. Jackson

What is cross-site request forgery (CSRF) attack?

1. Victim has a valid
session with bank.com

2. Victim visited a
malicious form

3. Victim tricked into
submitting form

5. Money transferred
to attacker 

4. Browser automatically
attaches session-id

15

The most dangerous software vulnerabilities

1. CWE-119 Improper Restriction of Operations within
the Bounds of a Memory Buffer

2. CWE-79 Improper Neutralization of Input During
Web Page Generation (’Cross-site Scripting’)

3. CWE-20 Improper Input Validation

4. CWE-200 Information Exposure

5. CWE-125 Out-of-bounds Read

6. CWE-89 Improper Neutralization of Special Elements
used in an SQL Command (’SQL Injection’)

7. CWE-416 Use After Free

8. CWE-190 Integer Overflow or Wraparound

9. CWE-352 Cross-Site Request Forgery (CSRF)

10. CWE-22 Improper Limitation of a Pathname to a
Restricted Directory (’Path Traversal’)

16
[Galhardo ACSAC 2020]

1. CWE-89 Improper Neutralization of Special Elements used

... (’SQL Injection’)

2. CWE-502 Deserialization of Untrusted Data

3. CWE-787 Out-of-bounds Write

4. CWE-78 Improper Neutralization of Special ... (’OS

Command Injection’)

5. CWE-120 Buffer Copy without Checking Size of ... (’Classic

Buffer Overflow’)

6. CWE-94 Improper Control of Generation of Code (’Code

Injection’)

7. CWE-798 Use of Hard-coded Credentials

8. CWE-434 Unrestricted Upload of File with Dangerous Type

9. CWE-416 Use After Free

10. CWE-352 Cross-Site Request Forgery (CSRF)

Developers need help

17

“Addingcsrf().disable() solved the issue!!! I have no idea why it was enabled by default” – a StackOverflow post

[Meng ICSE 2018] Available at: https://arxiv.org/pdf/1709.09970.pdf

Developers definitely need help

“Addingcsrf().disable() solved the issue!!! I have

no idea why it was enabled by default”

“adding -Dtrust_all_cert=true
to VM arguments”

“I want my client to
accept any certificate
(because I'm only ever
pointing to one server)”

18
N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Argoty. ICSE 2018

Influencers -- how much influence does StackOverflow have?

Insecure Posts Total Views No. of
Posts

Min Views Max Views Average

Disabling CSRF
Protection*

39,863 5 261 28,183 7,258

Trust All Certs 491,567 9 95 391,464 58,594

Obsolete Hash 91,492 3 1,897 86,070 30,497

Total Views 622,922 17 - - -

Insecure StackOverflow posts seem to have a large influence on developers 

* In Java Spring Security for web applications
19

N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Argoty. ICSE 2018

As of August 2017

Some StackOverflow code made its way into
mobile devices

15.4% of apps contain code
snippets copied from StackOverflow

20
[Fischer 2017]

Most of them contain at least 1
insecure code snippet

Social Dynamics on Stackoverflow

21
https://stackoverflow.com/questions/10594000/when-i-try-to-convert-a-string-with-certificate-exception-is-raised

“the "accepted answer" is
wrong and INDEED it is
DANGEROUS. Others who
blindly copy that code
should know this.”

User: skanga [0] User: MarsAtomic [6,287]

“Do NOT EVER trust all
certificates. That is very
dangerous.”

“once you have sufficient
reputation you will be
able to comment”

“If you don't have
enough rep to comment,
… then participate …
until you have enough
rep.”

CryptoGuard – Java Crypto Code Scanning with
Deployment-quality Accuracy and Scalability

Max, min and avg LoC: 2,571K (Hadoop),

1.1K (Commons Crypto), and 402K

98.6% Precision

Out of 1,295 Apache alerts,
only 18 are false alarms

[Rahaman et al. ACM CCS 2019]
CryptoGuard and Benchmark on GitHub

CRYPTOGUARD DEPLOYMENT & IMPACT

Nominated for NSA Science of

Security Paper Competition

Parfait (an internal Oracle product) uses
our approach to scan production code

22

Comm. Of ACM article on CryptoGuard: https://cacm.acm.org/news/246385-a-tool-for-hardening-java-crypto/fulltext
23

Juniper Dual EC Incident (2015)

24
[Checkoway CACM 2018]
https://youtu.be/M5LMFQDN2vY

unsigned int index;

void prng_reseed(void) {.

 ….

 // obtain a 32B secret w/ Dual EC

 index = 32;

}

void prng_generate(void) {

 ….

 if {

 … prng_reseed();

 }

 for (; index <=31; index +=8) {

 …. // generate a PR output

 memcpy(&output[index, block, 8);

 }

}

https://youtu.be/M5LMFQDN2vY

Open research problems in secure coding

• [AI] Auto code repair, API completion

25

• [Extensibility] Generating
scanning algorithms
automatically? Easily enforce new
security rules?

• [Science of security] Benchmarking,
measurement, comparison

• [Languages] Java, Python, others
libraries?

• [Crypto libs] To ensure the
security of library code

Take-home message:

know there’re tools/strategies/resources to help
developers secure code

26

Need more research addressing practical deployment challenges

27

IACR

28

Papers:
• Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and Danfeng Yao.

"Cryptoguard: High precision detection of cryptographic vulnerabilities in massive-sized Java projects." In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2455-2472. 2019.

• Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. "CryptoAPI-Bench: A Comprehensive Benchmark on Java
Cryptographic API Misuses." In 2019 IEEE Cybersecurity Development (SecDev), pp. 49-61. IEEE, 2019.

• Ya Xiao, Yang Zhao, Nicholas Allen, Nathan Keynes, and Cristina Cifuentes. "Industrial Experience of Finding
Cryptographic Vulnerabilities in Large-scale Codebases." arXiv preprint arXiv:2007.06122 (2020).

• Mazharul Islam, Sazzadur Rahaman, Na Meng, Behnaz Hassanshahi, Padmanabhan Krishnan, Danfeng (Daphne) Yao.
Coding Practices and Recommendations of Spring Security for Enterprise Applications. IEEE Secure Development
Conference (SecDev). 2020.

• Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton P. Miller, Danfeng (Daphne) Yao. Development of Benchmarks for
Java Cryptographic APIs and Evaluation of Static Vulnerability Detection Tools. Under Revision. 2021.

Online Resources:
• CryptoGuard. https://github.com/CryptoGuardOSS/cryptoguard
• CryptoAPI-Bench. https://github.com/CryptoGuardOSS/cryptoapi-bench
• Secure TLS/SSL code examples. https://github.com/AthenaXiao/SecureTLSCodeExample
• https://mybinder.org/v2/gh/franceme/cryptoguard/2020_SecDev_Tutorial

Related references

Our tutorial today

2. Complex crypto coding
examples

3. CryptoGuard intro

6. Industry adoption

4. Tool eval benchmarks

1. Jupyter Notebook setup

5. Python code security

7. Demo time
29

Demo Sandbox

By: Miles Frantz

Live Environment
How is the demo being run?

● We will be using a public GitHub
repository

● MyBinder is a public and free JupyterHub
service

● We customize the Jupyter instance with
Docker

GitHub Link
Where is the code located?

● The GitHub repository is located at
github.com/franceme/Esorics_Conferen
ce

https://github.com/franceme/Esorics_Conference
https://github.com/franceme/Esorics_Conference
https://github.com/franceme/Esorics_Conference
https://github.com/franceme/Esorics_Conference
https://github.com/franceme/Esorics_Conference
https://github.com/franceme/Esorics_Conference

33

TLS/SSL Authentication
Code in JSSE

Presenter:
Ya Xiao

34

Mis-configuration of TLS/SSL can cause man-in-the-
middle attacks.

References:
[1] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. "The most
dangerous code in the world: validating SSL certificates in non-browser software." In Proceedings of the 2012 ACM
conference on Computer and communications security (CCS), pp. 38-49. 2012.
[2] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango Argoty. "Secure coding practices in java:
Challenges and vulnerabilities." In Proceedings of the 40th International Conference on Software Engineering (ICSE),
pp. 372-383. 2018.
[3] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. "Why
Eve and Mallory love Android: An analysis of Android SSL (in) security." In Proceedings of the 2012 ACM conference
on Computer and communications security (CCS), pp. 50-61. 2012.

35

TLS/SSL Authentication happens implicitly in
a code snippet

Client Server

Handshake

Hello!

Server Certificate

authentication

Client Certificate
(optional)

…

Exception!
Connection
terminated

HTTPS = HTTP + TLS

36

Several examples of customized TrustManager

Certificates TrustManager HostnameVerifier

Exception!

Certificates can
be trusted

Exception!

Hostname
is correct Success!

37

Customization 1: Secure or insecure?

38

Customization 1: insecure!

no verification happens!

It is insecure for doing nothing in the certificate validation
methods (i.e. checkClientTrusted, checkServerTrusted).

39

Customization 2: Secure or insecure?

40

Customization 2: insecure!

Catching the exception without re-throw it is insecure!

no exception will be threw out!

41

Customization 3: Secure or insecure?

42

Customization 3: insecure!

Bypassing the certificate validation under certain condition is insecure!

checkValidity only
checks whether
the certificate is
expired

Bypassing certificate validation

43

Secure Customization Example
How to handle a self-signed certificate?

44

Secure Customization: using KeyStore

A certificate can be specified as trusted by putting it in KeyStore. TrustManager

KeyStore

Certificate

A keystore is primarily a database for storing application secrets.
Keystores can also be used for storing “trust certificates” and CA
chains.

TLS/SSL Related Vulnerabilities

45

Vulnerability Description Recommended Practices

Custom TrustManager to trust all certificates Configure KeyStore

Custom Hostname verifiers to accept all hosts Specify accepted hostnames

Custom SSLSocketFactory w/o manual Hostname verification Manually call HostnameVerifier.verify(.)

Occasional use of HTTP Use HTTPS

See more vulnerability types and the recommended practices for them in
https://github.com/AthenaXiao/SecureTLSCodeExample

46

CryptoGuard Design/Results

Presenter:
Ya Xiao

Slides credits: Sazzadur Rahaman

Cryptographic Misuse Detection with CryptoGuard

- CryptoGuard is a static analysis tool
- Dataflow analysis is implemented on Soot

Precise cryptographic misuse detection is hard ...

CoverityScan (Java/C/C++)

FixDroid (Android)

SpotBugs (Java)

CrySL (Java/Android)

State-of-the-art

Practical

CryptoLint

CryptoGuard (our solution)

48

Goal and Challenges

FP vs. FN vs. Scalability

How do you handle

False Positives?

CryptoGuard (our solution)

For scalability and reduced FN,

we avoid

path-sensitive analysis

49

Sources of false positives ...

Implementations of some methods are not available!

50

Reduce false positives: Programming idioms and language
restrictions to the rescue!

bytes = virtualinvoke key.<String: byte[] getBytes(String)>("UTF-8")

State indicator

key = staticinvoke <PassEncryptor: String getKey(String)>("pass.key")

Resource identifier

key = interfaceinvoke map.<HashMap: String get(String)>("key_id")

Resource identifier

Observation I: A vast majority of them are caused by phantom methods!

51

Reduction of False Alerts by Our Refinement Insights

RI I: Removal of state indicators RI II: Removal of resource identifiers

RI III: Removal of bookkeeping indices

RI V: Removal of constants in infeasible paths

RI IV: Removal of contextually incompatible constants

We evaluated the performance on
 - 46 Apache projects
 - 6,181 Android apps

Apache: 76% reduction

Android: 80% reduction

We customized the Data flow analysis algorithms to incorporate these insights ...

52

Deployment-grade accuracy

Only 1.39% false positives!

Manual analysis confirmed 18 false alerts ...

53

Performance Optimization With Subproject Dependency Analysis

Subproject Dependency Graph

(Apache Ranger)

ranger-plugins-commons

ranger-plugins-audit

security-admin

ranger-util

unixauthclient

plugins-kms

ranger-kms

Root-subprojects can be analyzed in parallel!

54

Other Features: CryptoGuard uses forward slicing for
some rules (Insecure SSLSocket)

SocketFactory sf = SSLSocketFactory.getDefault();

SSLSocket socket = (SSLSocket) sf.createSocket(""mail.google.com", 443);

HostnameVerifier hv = HttpsURLConnection.getDefaultHostnameVerifier();

SSLSession s = socket.getSession();

if (!hv.verify("mail.google.com", s)) {

 throw new SSLHandshakeException("Expected mail.google.com, not found ");

}

// Use SSLSession

socket.close();

SSLSocket requires manual hostname verification

55

Single round of analysis is not sufficient (Insecure asymmetric
crypto)

 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance(algoritm);

 keyPairGenerator.initialize(keySize, new SecureRandom());

Detection of Insecure RSA key size with multi round analysis

"RSA"

Backward slicing

Forward slicing

 512

Backward slicing

56

Deployment-grade scalability -- 46 open-source Apache
projects evaluated

We discovered misuses in Apache top-tier projects!

Security finding (deterministic salt)

Weak message digest
Generates salt from the password itself!

#number of Iterations is the length of the password

58

Android app libraries have issues

96% of detected issues come from mid-level libraries

Rules Desc.

2 Predictable pwds for PBE

3 Predictable pwds for keystores

4 Dummy hostname verifier

5 Dummy cert. verifier

7 Use of HTTP

9 Weak PRNG

12 Static IV

16 Broken hash

Package name Violated Rules

com.google.api 3, 4, 5, 7

com.umeng.anlytics 7, 9, 12, 16

com.facebook.ads 5, 9, 16

org.apache.commons 5, 9 , 16

com.tencent.open 2, 7, 9

59

Benchmarks:
Test Cases & Evaluation

Presenter:

Sharmin Afrose

60

 Two benchmarks based on Java cryptographic API misuses

 CryptoAPI-Bench: Includes 181 unit test cases of 18 Rules

 ApacheCryptoAPI-Bench: Includes 122 test cases from 10 Apache projects

61

Compare different
tools relative
performance

Improve tool’s
performance

Educate
secure code VS
insecure code

Java Cryptographic Benchmarks

62

https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench

Benchmarks: Open-sourced

https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench

63

Test Cases: Detailed Information

 Cryptographic API: URL

 Vulnerability: Insecure website

64

Test Cases: URL

 Cryptographic API: URL

 Vulnerability: Insecure website

65

Insecure

Insecure Connection

Test Cases: URL

 Cryptographic API: URL

 Vulnerability: Insecure website

66

Insecure Secure

Insecure Connection Secure Connection

Test Cases: URL

 Cryptographic API: Random, SecureRandom

 Vulnerability: Predictable number generation

67

Test Cases: Random Number

 Cryptographic API: Random, SecureRandom

 Vulnerability: Predictable number generation

68

Insecure

• Follow definite mathematical algorithm

• Required attempt: 2^48

Predictable!

Break in
practical time!

Test Cases: Random Number

 Cryptographic API: Random, SecureRandom

 Vulnerability: Predictable number generation

69

Insecure Secure

• Follow definite mathematical algorithm

• Required attempt: 2^48

• Produce In-deterministic output

• Required attempt: 2^128

Predictable!

Break in
practical time!

Need several years
to break in!

Unpredictable!

Test Cases: Random Number

 Cryptographic API: SecretKeySpec

 Vulnerability: Constant cryptographic key

70

Test Cases: Cryptographic Key

 Cryptographic API: SecretKeySpec

 Vulnerability: Constant cryptographic key

71

Insecure

Cryptographic Key derived from
• Constant byte array
• Device ID
• Timestamp

Predictable
Insecure!

Test Cases: Cryptographic Key

 Cryptographic API: SecretKeySpec

 Vulnerability: Constant cryptographic key

72

Insecure Secure

Cryptographic Key derived from
• Constant byte array
• Device ID
• Timestamp

Predictable
Insecure!

Unpredictable
Secure!

Cryptographic Key derived from SecureRandom API

Test Cases: Cryptographic Key

 Cryptographic API: MessageDigest(…)

 Vulnerability: Insecure cryptographic Hash

73

Test Cases: Message Digest

 Cryptographic API: MessageDigest(…)

 Vulnerability: Insecure cryptographic Hash

74

Insecure

Original File

Corrupted File

MD5 cdc47d670159eef60916ca03a9d4a007
 (128bits)

Same hash

Collision attack!

Test Cases: Message Digest

 Cryptographic API: MessageDigest(…)

 Vulnerability: Insecure cryptographic Hash

75

Insecure Secure

Original File

Corrupted File

MD5 cdc47d670159eef60916ca03a9d4a007
 (128bits)

Same hash

Collision attack!

Original File

Corrupted File

SHA256 Cdc47…… ca039 (256 bits)

SHA256 ac682…… 35a91 (256 bits)

Different Hash

Safe!

Test Cases: Message Digest

 Cryptographic API: Cipher

 Vulnerability: Insecure cryptographic cipher algorithm

Test Cases: Cipher

76

 Cryptographic API: Cipher

 Vulnerability: Insecure cryptographic cipher algorithm

Insecure Secure

 DES Encryption:
 Key size: 56

 ECB Mode of Operation:

Using ECB Original

Leak plaintext

information!

Bruteforce attack!

Test Cases: Cipher

77

 Cryptographic API: Cipher

 Vulnerability: Insecure cryptographic cipher algorithm

78

Insecure Secure

 DES Encryption:
 Key size: 56

 ECB Mode of Operation:

Using ECB Original

Leak plaintext

information!

Bruteforce attack!
 AES Encryption:

 Key size: 128, 192, 256

 CBC Mode of Operation:

Using CBC Original

Random

Appearance!

More Secure!

Test Cases: Cipher

79

CryptoAPI-Bench

Basic Cases
Advanced

Cases

Interprocedural

Field Sensitive

Combined Cases

Path Sensitive

Multiple Class

Miscellaneous

One procedure Different procedure

Field variable of class

Combination of interprocedural
& field sensitivity

Map interface, etc.

Different class

Conditional branch

CryptoAPI-Bench: Structure

80

Advanced
Cases

Interprocedural

Field Sensitive

Combined Cases

Path Sensitive

Multiple Class

Miscellaneous

Iteration count value passed to another procedure

CryptoAPI-Bench: Interprocedural

81

Advanced
Cases

Interprocedural

Field Sensitive

Combined Cases

Path Sensitive

Multiple Class

Miscellaneous

Iteration count value is determined from conditional statement

CryptoAPI-Bench: Path Sensitive

 None designed to
handle path

sensitive cases

82

Tools SpotBugs CryptoGuard CrySL Coverity

Recall (%) 92.86 92.86 71.43 92.86

Precision (%) 100.00 100.00 62.50 100.00

S. Afrose, S. Rahaman, and D. Yao. "CryptoAPI-Bench: A Comprehensive Benchmark on Java Cryptographic API Misuses." 2019 IEEE Cybersecurity Development (SecDev). IEEE, 2019
S. Afrose, Y. Xiao, S. Rahaman, and D. Yao. “Development of Benchmarks for Java Cryptographic APIs and Evaluation of Static Vulnerability Detection Tools“ (Under Review)

Tools SpotBugs CryptoGuard CrySL Coverity

Recall (%) 0.00 95.59 58.82 19.12

Precision (%) 0.00 83.33 56.34 52.00

CryptoAPI-Bench: Basic cases in (6 common rules):

CryptoAPI-Bench: Advanced cases in (6 common rules):

Version: Cryptoduard: Commit id 97b220 ; CrySL: Commit id 004cd2 ; SpotBugs: Version 3.1.12 ; Coverity: September 2020

Tools SpotBugs CryptoGuard CrySL Coverity

Recall (%) 87.50 93.75 93.75 81.25

Precision (%) 100.00 100.00 50.00 81.25

ApacheCryptoAPI-Bench: (6 common rules):

Majority cases are
Basic Cases

Evaluation

Python Static Analysis via Cryptolation

By: Miles Frantz

Analyzing Python

● Java is strongly typed
● Python is a weakly typed

● Functions are treated as first class objects within

Python

● Java is compiled
● Python is Interpreted

Cryptolation Structure

● Scans the source code of files
● Cycles through the different types of arguments

● Keyword

● Optional

● Non-Optional

● Validates the specific argument based on

● Type

● Rule

Import Difference
How are Java and Python import statements different?

● Java can import using wild card
statements

● Java can only import at the top of the
file

● Java has one basic formula for imports

● Python has multiple formulas for imports
● Python can rename imports
● Python can import at a local scope

Ambiguity in imports
Can imports be malicious (or accidentally misused)?

● Line 2 and 8 import hash libraries
● Line 8 imports sha1 as sha512

● The message at line 5 is hashed using
sha512

● The message at line 11 is hashed using
sha1

Path Sensitivity
Will only happy paths be
analyzed?

● The url is slightly changed based on the
conditional

● The static analyzer has to determine the

correct path flow or evaluate both
conditions

Malicious Path Sensitivity
Can this be misused or mis-
analyzed?

● The code path listed to the left is simple to
understand

● Looking at the code we understand the

requested url is not secure

● Standard security guidelines tell us to use

https instead of http

Locality Issues
Can local based imports be an
issue?

● The code listed below uses a local
import to create a hmac using MD5

● The MD5 import is renamed as SHA512

91

Parfait-CryptoScanner
Design/Results

Presenter:

Ya Xiao

What does industrial strength code scanner look like?

92

Oracle’s Parfait – an industrial strength static analysis tool for
software security (started in 2007)

Parfait is fast --
analyzing 10.6 million
of lines of code in 80
mins on a 2.9GHz AMD
computer

https://labs.oracle.com/pls/apex/f?p=labs:49:::::P49_PROJECT_ID:13

Cristina Cifuentes and her team

Parfait is precise --
average false positive
rate < 10%

93

Oracle Lab Australia implemented CryptoGuard’s
approach (2019) to scan production code

https://arxiv.org/abs/2007.06122
94

95

Oracle Parfait

.bc
LLVM IR

C/C++ source

JAVA source

PL/SQL source

Parfait Result

Industrial bug checker

Bug Pass 1

Bug Pass n

…

Our work

IFDS Analysis

Refinement Insights

Crypto Vulnerability
 Detection

An interprocedural, flow-, context-,
field-sensitive dataflow analysis.

The refinement insights to remove
pseudo-influences that cause false

positives

We strengthen the Crypto Vulnerability Detection
Module in Parfait

96

Industrial strength scalability enabled by Parfait’s Layered
Framework Design

Entry

cryptoApi1(sc)

slicing

Exit

…

…

method	a

Time

Entry

cryptoApi2(sc)

slicing

Exit

…

…

method	b

Entry

cryptoApi3(sc)

slicing

Exit

…

…

method	c

…

Entry

a(..)

slicing

Exit

…

…

method	d

Layer	1

Entry

b(..)

slicing

Exit

…

…

method	e

Bug

No	Bug

ends	with

ends	with

Entry

f(..)

slicing

Exit

…

…

method	f

Layer	2

Layer	3

Schedule scanning tasks from the quickest
to the slowest

“I’ll use your tool only if scanning
completes overnight.” – from an Oracle
developer

Refined IFDS Analysis

• Design for precision: We specialize the IFDS analysis propagation through refinement
insights to remove these pseudo-influences.

Five types of pseudo-influences in the
work [CryptoGuard 2019]
• State indicators
• Resource identifiers
• Bookkeeping indices
• Contextually incompatible constants
• Constants in infeasible paths

p1

p1

p2

p2

Results of Parfait’s crypto scanning 11 internal Oracle projects (Java)
-- detection approach based on CryptoGuard

o Scanned 11 projects; reported 42 vulnerabilities with 0 false positive (100% precision)
o Average runtime 338.8s for 11 projects with average 395.4k LoC

Scanning on Oracle internal
projects

98

Parfait’s benchmark evaluation (on CryptoAPI-Bench)

99

98.4% Recall
86.6% Precision -- 100% precision if excluding path sensitive cases

How many actual vulnerabilities are reported? Higher the better 

How many reported alerts are real vulnerabilities? Higher the better 

Live Demo

By: Miles Frantz

Running the code
How does this look?

Questions?

102

